383 research outputs found

    Universal joint-measurement uncertainty relation for error bars

    Get PDF
    We formulate and prove a new, universally valid uncertainty relation for the necessary error bar widths in any approximate joint measurement of position and momentum

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable

    Automation technology and sense of control: a window on human agency.

    Get PDF
    Previous studies have shown that the perceived times of voluntary actions and their effects are perceived as shifted towards each other, so that the interval between action and outcome seems shortened. This has been referred to as 'intentional binding' (IB). However, the generality of this effect remains unclear. Here we demonstrate that Intentional Binding also occurs in complex control situations. Using an aircraft supervision task with different autopilot settings, our results first indicated a strong relation between measures of IB and different levels of system automation. Second, measures of IB were related to explicit agency judgement in this applied setting. We discuss the implications for the underlying mechanisms, and for sense of agency in automated environments

    Geohazards analysis of Pisa tunnel in a fractured incompetent rocks in Zagros Mountains, Iran.

    Get PDF
    The Pisa 2 tunnel with 740 m in length and 20° N trend is located along the Kazerun fault zone in Simply Folded Belt of Zagros, Iran. This tunnel has been excavated in the fractured incompetent marl layers with high expansive pressure of up to 2 kg/cm2. In this study, the geological hazards along the tunnel have been recognized and categorized. This study revealed that, in the long-term usage of the tunnel, the lining did not endure against the loading and the secondary leakages. It is mainly attributed due to the non-efficiencies of drainage and isolation systems in the tunnel site. Therefore, it caused asphalt damage, drainage damage, and wall distortion. FLAC3D software has been used in this research. We conducted various analyses for pre-excavation stress states, syn-excavation, and post-excavation strain states. The results showed no indication of instability and critical deformations during the excavation time. It also revealed that due to the non-efficiencies of drainage and isolation systems against secondary leakages and consequently marl expansion, the volumetric and shear strains (i.e., expansions and displacements) have exceeded from the critical states of strain along the tunnel. For various remedy purpose, this paper attempted several measures that can be taken in order to modify the drainage and isolation systems along the tunnel area. The reconstruction of drainage systems with suitable reinforced concrete and adequate slope has been proposed. The width of channel and isolation of backside of lining and implementation of multi-order outlets (i.e., backside of lining) for draining of groundwater into where the main drainage systems are located in the tunnel gallery were suggested

    Barycentric decomposition of quantum measurements in finite dimensions

    Full text link
    We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of k \le d^2 points of the outcome space, d< \infty being the dimension of the Hilbert space. We prove that for second countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein-Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on k \le d^2 points of the outcome space.Comment: !5 pages, no figure

    Brain\u2013Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems

    Get PDF
    Increasing the level of automation in air traffic management is seen as a measure to increase the performance of the service to satisfy the predicted future demand. This is expected to result in new roles for the human operator: he will mainly monitor highly automated systems and seldom intervene. Therefore, air traffic controllers (ATCos) would often work in a supervisory or control mode rather than in a direct operating mode. However, it has been demonstrated how human operators in such a role are affected by human performance issues, known as Out-Of-The-Loop (OOTL) phenomenon, consisting in lack of attention, loss of situational awareness and de-skilling. A countermeasure to this phenomenon has been identified in the adaptive automation (AA), i.e., a system able to allocate the operative tasks to the machine or to the operator depending on their needs. In this context, psychophysiological measures have been highlighted as powerful tool to provide a reliable, unobtrusive and real-time assessment of the ATCo's mental state to be used as control logic for AA-based systems. In this paper, it is presented the so-called "Vigilance and Attention Controller", a system based on electroencephalography (EEG) and eye-tracking (ET) techniques, aimed to assess in real time the vigilance level of an ATCo dealing with a highly automated human-machine interface and to use this measure to adapt the level of automation of the interface itself. The system has been tested on 14 professional ATCos performing two highly realistic scenarios, one with the system disabled and one with the system enabled. The results confirmed that (i) long high automated tasks induce vigilance decreasing and OOTL-related phenomena; (ii) EEG measures are sensitive to these kinds of mental impairments; and (iii) AA was able to counteract this negative effect by keeping the ATCo more involved within the operative task. The results were confirmed by EEG and ET measures as well as by performance and subjective ones, providing a clear example of potential applications and related benefits of AA

    Spreading of a Macroscopic Lattice Gas

    Full text link
    We present a simple mechanical model for dynamic wetting phenomena. Metallic balls spread along a periodically corrugated surface simulating molecules of liquid advancing along a solid substrate. A vertical stack of balls mimics a liquid droplet. Stochastic motion of the balls, driven by mechanical vibration of the corrugated surface, induces diffusional motion. Simple theoretical estimates are introduced and agree with the results of the analog experiments, with numerical simulation, and with experimental data for microscopic spreading dynamics.Comment: 19 pages, LaTeX, 9 Postscript figures, to be published in Phy. Rev. E (September,1966
    corecore